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SUMMARY 

This report contains the results of an investigation carried out for the 

NASA Langley Research Center TCV B-737 program to study the problems in 

navigation and guidance encountered by aircraft in the initial transition period 

in changing from DME, VORTAC, and barometric instruments to the more 

precise MLS data type navaids in the terminal area. The report investi- 

gates the effects of the resulting discontinuities on the estimates of position 

and velocity for both optimal (Kalman type navigation schemes) and fixed gain 

(complementary type) navigation filters, and the effects of the errors in cross 

track, track angle, and altitude on the guidance equations and control commands 

during the critical landing phase. A method is presented to remove the dis- 

continuities from the navigation loop and to reconstruct an RNAV path designed 

to land the aircraft with minimal turns and altitude changes. 

Areas for additional study are recommended to cover special problems 

encountered in the study. Smooth transition performance is shown to be pos- 

sible and feasible for aircraft utilizing MLS navaids in the terminal area. 



INTRODUCTION 

During the noncritical phases of automated aircraft flight, navaids 

such as VORTAC, TACAN, and baro-altimeter are considered sufficiently 

accurate for navigation, guidance,and control. Range bias errors of the 

order of magnitude of 500 meters are not uncommon, heading bias errors 

of 1” are often encountered, and corresponding altitude bias errors of 40 

meters are ordinarily met. With the introduction of MLS in the terminal 

area, these instrument biases are abruptly reduced to 30 meters in range, 

.05’ in azimuth and elevation,and 5 meters in altitude. 

The effect of this sudden realization of the true error is to present 

the navigation and guidance system with a large deviation in cross track, 

track angle and altitude. These command the control system to execute 

large roll angles to wipe out the cross track and track angle errors, and to 

call for large elevator and throttle changes to attain the desired altitude and 

altitude rate. In addition, the navigation filter, in response to the large 

residuals, causes transient errors in the estimate of the position and velocity. 

Finally, the guidance gains in the terminal area tend to be somewhat higher than 

those used during the noncritical flight phase which further aggravates the 

transition problem. 

The purpose of this study is to simulate typical transitions in the 

terminal area and to investigate what software changes might be undertaken 

to reduce the severity and perhaps eliminate the navigation guidance and con- 

trol problems described above without unduly changing the existing guidance 

laws or navaids. 

Simulation programs (ALERT, BANKTURN) of the TCV B737 aircraft 
* 

are described in Reference 1. In order to simulate the transition problem it 

was necessary to add a simulation of the RNAV waypoint path design equations, 

the noncritical navaids such as VORTAC, and the baro altimeter and to duplicate 

1. * Pines, S.; Schmidt, S. F.; and Mann, F. : Automated Landing, Rollout, 
and Turnoff Using MIS and Magnetic Cable Sensors. NASA CR-2907, Oct. 1977. 



the guidance equations for the lateral and vertical path control. Finally, it 

was necessary to include a simulation of both the Kalman and complementary 

navigation filters in a single program in order to be able to illustrate the 

relative estimation performance of a given filter when the alternate filter was 

being used in the guidance loop. The program containing these changes is 

named FILCOMP. Only those items that are new and not contained in Ref. 1 

are described herein. The analytical work is contained in four Appendices. 

Appendix A contains an introduction into vector and matrix operations which 

are extensively used in the waypoint path equations and in the guidance for- 

mulation. Appendix B contains the derivation of the waypoint path equations 

and guidance. Appendix c contains the derivation of the third order com- 

plementary filter in discrete form (i. e., without internal numerical integration 

loops) which is not used in the TCV B737 flight control computer. Appendix D 

contains the derivation of navigation filter equations for estimating the wind 

direction and speed. 

The main body of the report contains the results of the simulation study 

carried out using the FILCOMP program. 



I. RNAV GUIDANCE EQUATIONS 

( a) Coordinate Frames 

The RNAV path equations are defined and derived in Appendix B. 

The desired horizontal path consists of a series of straight lines (great 

circles) connected by circular turns of constant radius. The vertical path 

is a piecewise linear function of the ground track distance between the con- 

secutive midpoints of the circular turns. The entire path is fixed in the 

Earth and rotates rigidly with the Earth about the North Pole. The guidance 

equations are designed to null out the cross track, track angle and altitude 

errors between the aircraft position and heading with respect to this rotating 

path. In order to accomplish this, the navigation system must provide esti- 

mates of these errors from knowledge of the desired position and velocity 

and the best estimate of the aircraft actual position and velocity. 

Several coordinate systems are required to accomplish this task. 

The primary inertial coordinate system is illustrated in Fig. la where $,I is 

directed along the Earth North Pole. %,I is fixed at the intersection of the 

Greenwich Meridian and the Earth equator. The g21 coordinate forms a 

right hand orthogonal system defined by 

f ;21 3 = c ;;I 3 x c ilI 3 

The second coordinate frame of interest is the Earth fixed coordinate 

system. In this reference frame, glE is along the Earth North Pole, 2 a 
3E Is 

fixed along the intersection of the Greenwich Meridian and the Earth equator 

and rotates with the Earth at the earth rotation rate, w 
E ; 22E forms a right 

hand system. The transformation from the E frame to the I frame is given by 

(1) 

A 

TIE = T ( wE (t-t,) , x1) (24 



NORTH 
POLE 

EARTHEQUATOR 

Figure l(a).-Primary Inertial Coordinate System 
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EARTH EQUATOR ” 

(b) Earth Fixed Inertial Coordinate System 

(GREENWICH AT t ) 

Figure 1. -Concluded. 



The transformation matrix, T ([Y , i ) is defined in Appendix A. The 

coordinate system is illustrated in Fig. l(b). We have 

1 0 0 

T = 
IE 

i 

0 co WE(t-to)) < -sin(wE(t-to)) 

0 sin(wE(t-to)) co<wE(t-to)) 

The value of wE is given in Table I. 

To obtain the vector velocity and acceleration of a point in Earth fixed 

coordinates in terms of inertial coordinates, we have 

I 
A 

-W EE x1 3 x i RI 3 

3 

(2b) 

cw 

The third coordinate frame used in the guidance equations is the local 

level coordinate frame. Ln this system the xlL coordinate points due north, 

the xzL coordinate points due west, and the x 3L coordinate is positive up away 

from theEarth center through the center of gravity of the aircraft. The origin 

of the system is at the center of gravity of the aircraft. The transformation from 

local level to inertial coordinates, TIL , is given by 

A A 
T IL = WC+ x1 ) T ( a2 3 x2 ) (34 

where 

5 = WE (t-t,) + x 

X is the longitude of the aircraft 

6 is the latitude of the aircraft 

7 



The coordinate system is illustrated in Figure 2(a). The transformation, TILs 

is given by 

TIL = 

cos 6 

sin 6 sin al 

-sin 6 cos Qbl 

0 

cos Q 1 

sin 4 

sin 6 

-cos 6 sin al Pb) 

cos 6 cos a! 
1 

Given the inertial coordinates of the aircraft ( xl1 , xzI , x3I ) we 

have the unit north vector, 

;= 
I 
’ 

J 
the unit west vector, 

and the unit radius vector, 

;r= 

where 

W 

(4b) 

(4c) 

(4d) 



A 

x1I 
A 

A 

xlJ 

* 

x2I 

A 

x3L 

N = xlL 

w = x2L 

Figure 2(a).- Local Level Coordinate System 
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The aircraft longitude is given by 

x(t) = q-WE(t-to) We) 

A fourth coordinate system is the level ground coordinate which is a rotation 

of the local level system about the north pointing axis through 180° (see Fig. 2b). 

Thus, xIG is north, x2G is east,and x3G is down. We have 

A 

T IG = T(a+ x1 ) T (6,x2 ) T ( 7~ 9 x1 1 (5) 

To find the aircraft track angle we first obtain the relative velocity 
. 

vector with respect to the Earth, k 
REL’ 

expressed in the inertial frame and 

then rotate this relative velocity vector into the local ground system. 

where k REL 
=F$-wEixq 

Finally, 

4, = tan-l ( 
‘G tl) 

> W) 

The aircraft altitude rate, h , with respect to the ground is given by 

i = -iG (3) (6~) 

Similarly for the vertical acceleration in the local ground system we 

have 

. . . . 
fRG3 = T&CRREL 3 

. . 
where RREL = 

(74 

and ‘1; = -KG (3) 

10 



E = x2G 

(b) Local Ground Coordinate System 

Figure 2. - Concluded 
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The aircraft altitude is given by 

h = J 2 2 2 
XII + x21 + x3I - rE 

The final coordinate system used in the guidance equations is the 

body system. The xlB coordinate is along the fuselage pointing forward, 

the x 
3B 

coordinate vertically down toward the level ground,and the x 
2B 

coordinate is positive out along the right wing forming a right hand system. 

See Fig. 3. The transformation from body axis to inertial is given by 

T IB = TIGVJ,, ~3)T(e ,;r,)T(rp,$ (9) 

(b) RNAV Guidance Parameters 

The desired path is divided into segments. Each leg is either a straight 

line (great circle) terminating at the intersection with an arc of a circle, or a 

portion of a circular turn terminating at either the second half of the same 

circular turn or at the intersection with a straight line (great circle). The 

end of each leg is defined by a fixed vector waypoint whose coordinates are 

generated in the fixed Earth coordinate system in Appendix B. Along each 

segment we are required to generate the following RNAV parameters re- 

quired for guidance: 

(1) Cross track error 

(2) Track angle error 

(3) Distance to go to the end of the leg 

(4) Time to go to the end of the leg 

(5) Desired altitude and altitude rate 

(6) Desired airspeed 

(7) Desired flight path angle 

(8) Desired bank angle in the turn 

12 
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X2B 

* A 

Figure 3(a).- Body Coordinate System Relative To Level Ground 
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A 

X2B 

‘3B 
@) $J Rotation About ;3B 

(C) 13 Rotation About Rotated i2B 
6. X2B 

A * 

XIG = XIB 

(d) cp Rotation About Rotated fl, 

‘3B 
A 

X3G 

Figure 3. - Concluded 
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The equations for these quantities are different on a straight line 

than they are along a circular turn. The equations will be derived 

separately for each segment type. We may assume that we have available 

from the Inertial Navigation Unit the position, velocity and acceleration 

vectors in the inertial coordinate system. 

(1) Great C@cl-esuidance Parameters 

The desired position on a great circle, WD , lies in a plane which * 
contains the unit radius vector to the aircraft, RE , and the normal to the plane 

A 
containing the great circle, WN. WN is generated for each great circle by 

means of the equations given in Appendix B. Since every line in a plane is 

perpendicular to the normal of that plane, it follows that 

&)=L; - + sin /3 
cos /3 E cos B ;NN 

where 

sinp=-&N. ;I 
E = -cos ( r/2 + 6, 

cos 6 = 
J 

1-sin26 

See Fig. 4. 

* The cross track ezror is given in terms of the angle between RE and 

WD. Since the normal, WN,is perpendicular to WD, we have 

CRTE = - rE sin -l(RE l 

(104 

(lob) 

(11) 

The distance to go to the end of the segment is given in terms of the angle 

between WD and the waypoint at the terminus of the great circle segment, 

h(J) , which is computed in Appendix B. 

DISTGO = rE sin -1 
(1 GD x m(J) 1, (12) 

15 



Sin 
-1 

Figure 4.- Cross Track Error Along A Great Circle Segment 
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To obtain the desired heading along the ground track at the desired 

path position vector, &D , 
A 

we note that the unit vector, WD, is perpendicular 

to the plane which contains the unit north vector, i , the unit west vector, 

W , and the unit normal, WN . . (See Fig. 5). 

The desired heading, 4, , is the negative of the angle through which A 
we must rotate the unit normal vector, WN., about the desired unit position 

vector, WD , to have it coincide with the unit west vector W. Thus 

;K = cos$ D WN-sinqD WD x WN @3a) 

It follows that 

#, = tan-l +N+ 

WN l W 
@=I 

The track angle error is defined as z,+, - @, . Since this angle is small 

it is more accurate to use the tangent of the difference of the two angles rather 

than take the difference of two arc tangents. We have 

TAGE = tan 
-1 tan#T-tanti~ 

1 + tan $T tan GD 

The recommended equation is given by 

TAGE = tan-‘( 
;lG(2) (CjN - W) - l&(l) (WN l N) 

ii,(l) &N l W) + tiG(2) (U;N l N) 

To obtain the time to go to the end point of the great circle segment 

we divide the distance to go by the ground speed and obtain 

TMTGO = DISTGO VG / 
where 

8 
VG = tiG2(1) + hG2(2) 

(149) 

W) 

(Isa) 

(1%) 

17 
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rE WD 

DESIRED GROUND TRACK 

Figure 5. - Track Angle Error Along A Great Circle Segment 
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The HNAV equations for desired height, HC , the desired altitude 

rate, HDC , and the desired airspeed are given by 

HC W = HEND - GRAD l DISTGO(t) 

HDC(t) = VG(t) l tan (GRAD) 

VDESIR(t) = VGE - DVG l DISTGO(t) 

where, 

HEND is the desired height at the end point of the segment and is 

computed in Appendix B 

GRAD is the desired altitude gradient and is computed in Appendix B 

DVG is the desired airspeed gradient (change in airspeed per unit 

of ground track distance) and is computed in Appendix B. 

VGE is the desired airspeed at the end of the segment aircraft is 

tracking. 

The bank angle command for the great circle is zero since we desire a 

straight line path, 

BANK = 0. 

In order to provide lead time to execute the bank command at the 

onset of the turn, the bank command is switched to the value it would have 

in the turn, namely, 

BANK = sign ( A$ ) tan-’ (vG2/&,,/ G ) 

as soon as the time to go to the end of the great circle is less than the bank 

command divided by the maximum bank rate, imx . We switch from 

Eq. (17a) to Eq. (17b) whenever 

TMTGO 5 tan i,,, 

(16a) 

w-4 

WC) 

(lm) 

(17c) 

19 



where 

% 
is the turn radius of the oncoming turn, and G is the constant 

of gravity. 

and 

A$ is the change in heading to be executed by the turn. A$ and 

its sign are computed in Appendix BI 

(2) Guidance zUacameters in the Turn 

The logic for defining the unit desired vector, W D, on the turn circle 
A 

and the unit normal to the path at the turn circle, WN , is based on the con- 

cept that they both lie in the plane defined by the unit aircraft position vector, 

LE , and the unit center of the turn vector, &R . See Fig. 6. The vector A A 
equation for WD and WN are given by 

;D = 1 
sin @ (since l~-~h(a-fi)&) 

and 

;N = _ “gn ( & ) 
sin B ( - cos Q ;eE + cos (a - 6) ;R) 

where 

% 
of=- 

rE 

and 

/5 = sin -‘I ;1E x ;RI 

WW 

Wb) 

(184 

Having obtained the desired unit vector position on the turn and the normal to 

the desired path, the equations for the guidance parameters for the cross 

track error, CTRE , and the track angle error, TAGE , are identical to 

those given in Eq’S. (11) and (14b). 

20 



* 
If sign ( A$I ) is negative, GN points inward toward GR 

Figure 6. -Normal, Desired Position, and Center of Turn Circle 

Along a Turn Segment 
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The distance to go equation to the end of the turn segment differs 

from the straight line DISTGC in two respects. First the ground track 

length of the turn is the arc of a circle whose radius is RT and not rE; 

second, the turn is divided into two segments in order to provide a 

mechanism for introducing changes in the altitude and airspeed gradients 

which may occur at the midpoint of the turn. 

To solve for the distance to go on a turn we compute the angle between 

the unit normal at WD and the unit normal at the end of the circular segment, 

WAE. The normal at the end of the segment is computed in Appendix H. We 

have 

8 = sin-l (1;~ x WNEI) 

where WNE is the normal at the end of the circular segment 

Since the sin 8 = sin ( 12 - 8 ) we must test to see if e <> r /2. To accom- 

plish this we compute 

cos 8 = iw l WNE 

If cos 8 is negative, we set 

8 = 71 - sin-l (JWN x WNEI ) 

The final result yields 

DISTGO = RT . 8 

(19a) 

Wb ) 

WC) 

(20) 

The equations for the time to the end of the segment, TMTGO , HC(t), 

HDC(t) and VDESIR(t) are all computed in a manner identical to Eqls. (15a), 

(15b), (16a), (16b), and (16~). 

22 



The bank angle command logic along the turn is given by 

BANK = sign (A#) tan -’ WG2/G,+ ) 

The lead command for anticipated return to the straight line is exer- 

cised only at the end of the second half of the turn. The bank angle command 

is continuous across the middle of the turn. Toward the end of the second half 

turn we test to see if the time to go is less than the time to return the bank angle 

to zero at the maximum bank rate. Whenever 

(W 

TMTGO 5 tan -’ WG2/k&) /iMA, 

we switch the bank command from Eq. (21) to BANK = 0. 

(3) Switching Logic 

The segments are arranged in groups of three. A great circle followed 

by a half turn, followed by another half turn. Only the final leg terminating at 

a touchdown way-point is treated separately. Each leg is numbered in sequence 

with the first leg initialized as segment number 1. This is always a straight 

line segment. The guidance information common to a given segment, such as 

the unit end waypoint, the desired height, airspeed and gradient, etc. are 

stored in an array for that segment. These data are computed once for the 

entire flight following the equations outlined in Appendix B. 

If the segment number, modulo 3, is 1 we are on a great uircle straight 

line segment and enter the data block for active guidance computations for a 

great circle arc. This arc is terminated whenever 

(22) 

TMTGO < .075 seconds (23) 

23 



A logical trigger defining a great circle arc as being TRUE is set 

to FALSE and remains FALSE until the segment number, modulo 3, is 

equal to 0. The segment number is advanced by unity at the end of each 

segment and the block storage for the segment parameters is brought into the 

active guidance loop. 

On the final leg a test is made on the last segment number and if the 

leg segment is equal to the last integer no further call to the block, storage 

is made. 

24 



II. NAVIGATION AND FILTERING FOR WAYPOINT GUIDANCE 

(a) The Estimate-&the Inertial State 

The aircraft is equipped with an inertial navigation system (INS) 

consisting of body mounted accelerometers for measuring the specific 

forces acting on the aircraft, plus a stabilized platform containing rate 

gyros for integration of the aircraft attitude and attitude rates. In the 

absence of instrument errors the inertial position and velocity may be 

obtained by integrating the inertial equations of motion 

-$,,I= -+ Cql + TIB C$,,l 
‘I 

where 

p=Gr; 

rI = 151 

T IB = T( al,+ T(% i,) T(&) T(&) T(O,;r,) T((D& 

{f,,,] is the specific force vector in the body system as computed 

by the IhZLT from the output of the body mounted accelerometers, [ act], 

’ fSF13 ’ = b,,l 

al = tan Y-5 (2y% (3)) 

ac2 = sin-l ( RI ‘1)/r 
I 

> 

Pa ) 

Wb) 

(24~) 

P4d) 

(24e) 

w ) 
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The Euler angles cp , 8 , and @ are computed by the JIMU system from the 

output of the rate gyros mounted on the stable platform. 

Since the rate gyros are subject to drift, the accelerometers contain 

biases and all the measurements are noisy, it is required to design an esti- 

mator to filter out the noise and obtain the best estimate of the aircraft state 

and the instrument biases. In addition, external navaids are required, such as 

VORTAC range and bearing as well as an aircraft barometer during the non- 

critical flight phase. For the critical terminal area, MLS range, azimuth, 

and elevation are used. These navaids are themselves subject to instrument 

biases. 

(b) Filter State Estimators 

Two estimators are described here. First, an optimal Kalman filter 

and second, a fixed gain complementary filter. Both are used in the study in 

a manner that permits the aircraft guidance equations to utilize the output of 

one filter with the non-controlling filter operating only in its estimating mode. 

In this manner both filters provide state estimates for comparison with the 

true state, and both filters can be compared as guidance state estimators as 

well. 

The two filters are designed to operate in a local flat Earth coordinate 

frame with the origin set at the navaid site. Thus when the VORTAC mode 

is in operation, the coordinate system for the error state estimate has its 

origin at the VORTAC station site 
A 

xiv 
is due north 

A 

x2v 
is due east 

A 

x3v 
is down toward the Earth center 
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The coordinates of the VORTAC station in the inertial system are 

given in terms of the station longitude, latitude, and altitude, hV , 

{ RIV(t) ] = TIE (rE+hV) (25) 

To obtain the local flat E&h coordinates of the aircraft with respect to the 

VORTAC station, we have 

t RFV 3 = TFI 1 F$ - F$v 1 

where 
A A A 

T FI 
= T( - II, x1) T ( - c!2, x2) T ( -+ x1) 

al = WE(t-to)+XV 

cz2 = % 

(See Fig. 7 ) 

Tn the case of the MLS landing site, the local flat Earth coordinate 

system is oriented so that il is aligned with the runway and the origin is 

located at the center line of the runway as shown in Fig. 8 . 

The inertial coordinates of the runway origin are given by 

1 ItrR(t) 3 = T IE FE + hR) 

(2h) 

(2 w 

WC) 

(2 w 

(27) 
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Figure 7. - VORTAC Flat Earth Coordinate System 

28 



- AIRCRAFT 

MLS 

‘\/- 
ELEVATION 

A xTm-aLTIT 1 

* 
X2R J( 

t 

RANGE 
AZIMUTH 

* ANTENNA 
X3R 

, 

Figure 8. -Runway Flat Earth Coordinate System 
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To obtain the local flat Earth coordinates of the aircraft in the runway system, 

we have 

where 

TFI = T(-QR, x3) T ( -17,. +, T ( -3s i2’ T ( -5, “1’ 

eR = runway azimuth measured from true north 

5 = WE(t - to’ +xR 

tY2 = 6R 

The Kalman error state is a 15 element vector consisting of 

R 

li 

bl , b2 3 b3 

b4 

error in the estimate of the aircraft position vector in 

the flat Earth coordinate system 

error in the aircraft estimate of the aircraft velocity 

vector in the local flat Earth system 

error in the estimate of gyro drift rates 

error in the estimates of horizontal components of the 

local wind 

errors in the estimate of the navaid instrument biases 

error in the estimate of vertical acceleration due to 

instrument bias. 

When the VORTAC navaids are operative, we have 

bl = bias in DME (range) 

b2 = bias in bearing 

b3 = bias in the baro reading of pressure altitude 

(2W 

(28 b) 

WC 1 
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When the MIS navaids are operative, we have 

bl = bias in azimuth 

b2 = bias in elevation 

b3 = bias in range (DME) 

Immediately prior to landing, at an altitude of 50 meters, the elevation reading 

is replaced by a vertical radar and b2 is the estimate in the bias of radar 

altitude. 

The filter equations for the Kalman optimal estimator for a flat Earth 

coordinate system are described in Ref. 1 and are not repeated here. 

The error state for the fixed gain complementary filter consists of 

the following: 

R Three components in the error of the position vector in the 

flat Earth coordinate system 

it Three components in the error of the velocity vector in the flat 

Earth coordinate system 
. . 
R Three components in the error of the estimate of acceleration 

in the flat Earth coordinate system 

iG x)“wy errors in the estimates of the horizontal components of the winds 

Thus the complementary filter is a nine state filter for the aircraft position, 

velocity, and acceleration. This is amply described in Ref. 1 and is not 

repeated here. The derivation of the complementary filter in discrete 

explicit form is derived in Appendix C since the derivation was not included 

in Ref. 1. 

31 



The navigation equations for the two filters are different and are 

described herein. 

(1) Kalman Navigation Equations 

When using the optimal Kalman filter, the navigation system estimates 

the expected bias errors in the gyro drifts. These are converted into correc- 

tions in the Euler angles and added to the output of the IMUestimate of the 

Euler angles as described in Ref. 1. 

A 
cp = ‘P~~~+Av 

ii=e IMU + A8 

The Kalman filter also estimates the bias error in the vertical accelerometer. 

This is treated as a correction to the estimate of the vertical specific force 

in the body system. 

and 

fsFB t3) = fSFB (3) - b4 

(29) 

PW 

‘SFB tl) = fSFB tl) 

iSFB (2) = fSFB (2) 

Wb) 

(3Oc) 

The Kalman navigation equations integrate Eq. (24a) in the inertial reference 

frame using an Euler integration formula. 

{ i2 (t) ] = { 4 (t - At) ] + + [ ‘I;, (t) + ;i (t - At) ? (314 
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where A 

c k; (t) 3 = - - c + (t - At) 1 + TIB 1 fsFB 3 @lb) 
^r,(t-At) 

and the angles used in computing the transformation T IB are 

Ql = tan -1 A 
(RI 

- 2(t - At) / ;113 ( t-At)) 

(t - At) / iI (t - At;> 

@ = ; w 

8 = 6 (t) 

The Kalman filter velocity correction is “eased in” in an exponential manner so 

as not to present the control command with abrupt discontinuities as described 

in Ref. 1. 

A 

f i$ (t) ] = [ Ii 

vk 

- - I (t) ? + e tk ( TIF t ‘R CL) ?> 

where the angles used in computing the transformation TIF , are given by Eq’s. 

(26b) - (26d) or Eq’s. (28b), (28~) depending on the station coordinates. 

The time 4’ is the last Kalman update time prior to the present time, 

t. The Kalman filter equations are processed only once every 10 normal time 

steps as described in Ref. 1. 

The integration of the velocity in the inertial reference frame to obtain 

the position vector is accomplished in a similar fashion. 

1 4 (t) ? = f ;tI 02 3 + ‘+ t 4 02 + 4 (t - At) ] 

(31c) 

(32) 

(33) 

33 



The Kalman correction to the position is given by 

9 

The best estimate of the inertial state is presented to the RNAV Guidance 

and Display routines. A block diagram of the Kalman filter navigation logic is 

shown in Fig. 9. 

(34) 

34 



ANq , ANe , A-# 

GYROS 
BODY MTD. 

ii (T) 

I 

r 
I 
5 (T) 

1 I 

‘4 (T) = *4(T) 
. 

‘$ (T) = J+, + F ( ‘$ (T) + $ (t) ) + TIF { A-k (T) ] 

3 tT) = q@) + + ( 4 (T) + 4(t) ) + TIF { LR (T) ] 

- Y(;r)MEAS 
RESIDUAL- 

- EDIT RESIDUAL 

I VORTAC 
& BAR0 

T 
KALMAN FILTER FI 

t 
EQUATIONS IN RFS 
STATION FLAT d I 

’ TRANSITION 
SELECT 

. 
R, (T) 

5 (T) 

EARTH COOR. 

SEE REF. 1 1 

Figure 9. -Navigation Equations for Kalman Filter 



(2) Complementary Filter Navigation Equations 

The complementary filter navigation equations are described in Appendix C. 

A prediction of the aircraft position in inertial coordinates is made using the 

assumption that the acceleration is constant over the start time interval, At. 

The Euler angles, cp , 8 and tC, are accepted without correction directly from 

the IMU. We have 

1 4(t) 1 = - k c ;1I@-at, 3 + TIB 1 fsFB(t)] + TIF [ R” (t-At) ] 
rf(t-A t) 

(35a) 

the angles used in computing when the transformation TIB are 

9 = tan -’ c- &(t - At) / i3 (t - At)) 

-1 
_ a2 

= sin & (t - At)/ Gl (t - At,> 

and angles for computing the transformation T IF are either Eq’s. (26b) - (26d), 

or Eq’s. (28b), (28~) depending on the station coordinates. The vector 

{ ‘i ( t - At) ] is the previous estimate of the acceleration random error 

variable from the complementary filter. 

To obtain the uncorrected velocity and position in inertial coordinates, 

we have 

E -t(t) 3 = c -; @-At) ? + At [ l &t, 3 

(3 5b) 

(36) 

(37) 

The complementary filter prediction of the pseudo observation used in the 

complementary filter is the position of the aircraft relative to the navaid site in 

the flat Earth coordinate system given by either Eq. (26a) or Eq. (28a). 
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We have 

f ‘FS 3 = TFI c 4 W - s W 3 

when f s (t) 1 is the inertial position vector of the navaid site. 

The computation of the pseudo observation of the relative position in 

terms of VORTAC range, rv , VORTAC bearing Qv , and baro altitude, 

Z 
V' 

is given by 

&(l) = rv ~0s ( 9,) 

RFs(2) = rv sin ( LCI,) 

RFs(3) = - z + (r 2 - zv2)/ 2 rE + h 
V V V 

Eq. (39c) yields the height above the plane, tangent to the Earth at navaid site 

as a function of the altitude above the spherica Earth and the range to the 

navaid site. 

The computation of the pseudo observation in terms of the MLS range, 

rMLs, the MLS azimuth, Q~, and elevation, 6MLs is given in Ref. 1. 

The complementary filter estimates of the errors in position, velocity, 

and accelerations are 

RFs(t) = (Gl-1) 1 RFs(t) - ‘FS @) 

‘FS@) = G2 1 RFs(t) - ‘#) 1 

iiFs = iiFs@ - At) + G3 { RFs(t) - RFs (t) ‘1 

(38) 

Wa) 

Wb) 

WC) 

WW 

W’b) 

(49c) 
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The best estimate of the relative state is given by 

To obtain the inertial state required for guidance and display routines, 

we have 

(41) 

@a) 

(42b) 

F-w 

A block diagram of the complementary filter navigation logic is presented 

in Fig. 10. 
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III. NAVIGATION AND GUIDANCE AT THE TRANSITION POINT 

(a) Filter Update at Transition 

Both the optimal Kalman filter and the fixed gain complementary filter 

require a settling time period when presented with an abrupt change in navaid 

observation type. As previously discussed, during the transition from VORTAC 

to the more accurate NILS data, the prediction of the MIS observations, based 

on the estimates of the aircraft position derived from VORTAC measurements, 

result in a large residual. In order to avoid undesirable effects of this pertur- 

bation, it is most convenient to reinitialize the aircraft estimate of its position 

from the first valid MLS observation set. The equations necessary to accomplish 

the change are presented for both filters. 

(1) Kalman Filter Update at Transition 

Let the coordinates of the range and azimuth antenna, in runway flat 

Earth coordinates be, { RAz } , and let the coordinates of the elevation antenna 

relative to the azimuth antenna be { REL]. The position of the aircraft in the 

runway flat Earth coordinate system computed from the MLS range, rM , the 

MLS azimuth , alvI , and the MLS elevation, ,3M , is given by 

fRFs3 = cRAz3 - 

where 

8 

XIM 
= al+(ai2-a2) 

X2M = - ‘M 
sin ( FM) 

= tan ( ( xlM - xlELj2 
& 

X3M +(X2M - X2EL) / 

al = XIEL sin2 ( 0,) 

(43a) 

(43b) 

2 2 
a2 - -‘M cos (PM) + x2M 2 - ( 2XzEL x2M - X2EL2 + X1EL2) sin2 ( 6,) 
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Prior to processing the first MIS observation, the Kalman best 

estimate of the aircraft inertial position is replaced by 

The angles used to generate the transformation T 
IF 

are the negative 

of the angles listed in Eq. (28C) where the transformation T 
FI 

is defined. 

In addition, the square root of the state covariance matrix, W(t), is 

reinitialized to diagonal form in order to eliminate undesirable cross corre- 

lations that were accumulated during the VORTAC data processing. We have 

for the diagonal elements of 

15 L 

wii = ( c wij2’2 
j=l 

Wij (j l i ) = 9 

i=l,9 

and i = 13 

The covariance elements of the expected error in the horizontal wind 

estimate9 w14, 14 ’ w14, 15’ w15, 14 and W 15,15 are retained unaltered. 

The elements of covariance matrix for the VORTAC instrument biases 

are eliminated and replaced by the diagonal elements of the MIS instrument 

biases 

W 10,lO = =MLS RANGE (30 meters) 

wll, 11 = =MLS AZIMUTH (. 05O) 

w12, 12 = ‘MLS ELEVATION (. 05O) 

(44a) 

(44b) 

(45) 
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(2) Complementary Filter Q&ate at Transition * -._- --_.. ..___,,,-.__, -. -... - _ __ 

In a manner completely similar to the Kalman filter transition 

Eq’s. (43a), (42b) and (44a), the estimate of the inertial aircraft position is 

given by 

+I = TIF 1 RFs3 + {RE@) 3 

In this manner the filter equations are no longer presented with abrupt 

perturbations and the processing of data is smooth. The aircraft guidance 

equations are now presented with an accurate estimate of the large cross track 

error, track angle error, and altitude error. 

(b) Path Reconstruction at Transition 

If the desired path, or the guidance equations remain unaltered at tran- 

sition, the bank angle command will call for a larger bank correction to recapture 

the desired path, and the stabilizer and thrust commands will call for large ver- 

tical path changes to achieve the desired altitude. In order to avoid these ’ 

unnecessary maneuvers the method chosen in the study to solve the transition 

problem is to reconstruct the remainder of the desired path to touch down by 

eliminating the cross track and altitude errors. This is accomplished by simply 

accepting the updated valid MLS position as the new first desired way point and 

retaining the remainder of the data for the initial N way points that have not yet 

been encountered. By executing the path construction equations, outlined in 

Appendix B, with this new reduced data set, a path will be constructed which will 

alter only the following segments of the original path: 

( 1) The great circle segment from the present MLS position to the incoming 

tangent way point to the new next turn circle. 

( 2) The turn segment to the middle of the new turn. 

( 3) The outgoing segment from the middle of the new turn to the unchanged 

next great circle. 

( 4) The vertical path for altitude and airspeed gradients along the three 

altered horizontal segments. 
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The consequence of these changes is to eliminate the initial cross 

track error and to eliminate the error in the desired height at transition. 

No attempt to zero out the track angle error was undertaken in this study. 

In addition, in order to reduce the computing work load for an aircraft 

computer, a trigger was introduced to avoid the path change in the event the 

cross track error is less than a prescribed amount (say 100 meters). 

Let iE be the unit aircraft position vector in the fixed Earth 

coordinate frame. Then the longitude and latitude of the new first way point 

is 

X (1) = tan -’ (- iE(2)/;iE(3) ) 

6 (1) = sin-l (&(3)) 

Let the magnitude of the inertial position vector, F$ , be rI , then the 

first desired altitude is given by 

h(1) = rI - rE 

and the new first desired airspeed is given by 

VD(l) = v airspeed (INS) 

Let P be integer corresponding to the last middle of the turn, &Z(P), 

processed at the time of the MIS transition update. The new number of initial 

way points to be used in constructing the path is given by 

Wa) 

Wb) 

(47c) 

Pw 

M = N-P (43) 
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We have for the remainder of the input data 

A (1) = x(P+I) 

6(I) = 6(P +I) 

h(I) = h(P + I) 

vD(l) = VD(P + I) 

(I) = 2,M 

The radius of the turn is given by 

F$(I) = RT (P - 1 + I) 

(I) = 1, M-2 

Fig. 11 illustrates a typical reconstructed horizontal path. 
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Figure 11. -Reconstructed Path at Transition 
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IV. RESULTS OF THE SIMULATION STUDY AT TRANSITION 

(a) Description of the Simulation Test Data 

This section contains the results of the computer runs of the FILCOMP 

program in the format of plots. Each run consists of three sets of plots.. The 

first contains the input data of the run including the way point path generation 

information, the magnitude and direction of winds, the filter type used in the 

navigation, guidance, and control equations, the MLS boundary limits defining 

the transition point, and a plot of the aircraft true ground track illustrating the 

reconstruction of the path on transition. The second figure contains seven plots 

of aircraft performance in the following order: 

( 1) Glide path deviation in meters for both the true deviation and the 

estimated deviation for the filter in use in the aircraft control. 

(2) Aircraft pitch angle in degrees for the true pitch, the measured 

pitch output of the IMU (used by the complementary filters) and the measured 

pitch corrected for the estimated gyro drift bias (used by the Kalman filter). 

(3) Aircraft altitude rate, measured in meters per second, for both 

the true rate of climb and the estimated rate obtained by the filter supplying the 

control equations. 

(4) Error in the estimate of the XIR (forward) position in runway 

coordinates, measured in meters, for both the Kalman and complementary filter. 

(5) Error in the estimate of the X2R (lateral) position in runway 

coordinates, measured in meters, for both the Kalman and complementary filter. 

(6) Error in the estimate of the i3R (vertical) position in runway 

coordinates, measured in meters, for both the Kalman and cfmplementary filter. 

(7) Error in the estimate of the forward velocity ( ilR) in runway 

coordinates, measured in meters per second, for both the Kalman and com- 

plementary filter. 

The third figure contains eight plots of an aircraft performance in the 

following order: 

(1) Cross track error, measured in meters, for both the true CRTE 

and the estimated CRTE for the filter used in the control. 
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(2) Track angle error, converted from degrees to time rate of 

change of cross track error by multiplying by the ground speed.- Both the 

true track angle error and the estimated track angle error used by the 

guidance equations are shown, measured in meters per second. 

(3) Aircraft roll angle, measured in degrees for the true roll angle, 

the measured roll angle supplied by the IMU (used in the complementary filter), 

and the measured roll angle corrected for the gyro drift bias (used in the Kalman 

filter). 

(4) Error in the estimate of the north component of the wind, in meters 

per second, for both Kalman and complementary filter. 

(5) Error in the estimate of the west component of the wind, in meters 

per second for both the Kalman and complementary filter. 

(6) Difference between the tm desired airspeed and the true airspeed. 

A second plot also shows the difference between the true ground speed and the 

true airspeed. The curves are mirror images of one another if there are no 

winds, and differ in the presence of winds. 

(7) Error in the estimate of the lateral velocity, izR , in meters per 

second for both the Kalman and complementary filter. 

(8) Error in the estimate of the vertical velocity, i3R , in meters per 

second for both the Kalman and complementary filter. 

(b) Discussion of the Results 

The first case, Fig’s. (12a), (12b) and (12c), illustrates the performance 

of the aircraft, following transition, where the VORTAC and bar-o bias errors 

have been removed from the estimate of the position through reinitialization, but 

no path reconstruction has been attempted. Plots 4, 5, and 6 of Fig. (12b) show 

the effect of the reinitialization at 33 seconds on the errors in the estimate of 

position. Plot 1 of Fig. (12~) shows the large CRTE presented to the guidance 

equations with no path reconstruction. Plot 3 of Fig. (12~) shows the large roll 

angle (20’) at 40 seconds and the overshoot in the opposite direction of loo at 

55 seconds as the aircraft attempts to recapture the original path. Plots 2 and 3 
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of Fig. (12b) illustrate the excessive pitch change and “roller coaster” effect 

in the rate of- climb that result when the desired vertical path has not been 

reconstructed. Fig. (12a) illustrates the large shift in ground track as the 

aircraft attempts to recapture the original path. 

Case 2, Fig’s. (13a), (13b) and (13c), illustrates the perfe& transition 

that would be possible if the actual vehicle position and velocity information 

were available to the guidance equations. Since the VORTAC bias errors do 

not appear in the estimate of the aircraft state, the cross track error, track 

angle error, and altitude errors are negligible both prior to and following tran- 

sition and a smooth trajectory results. 

Case 3, Fig’s. (14a), (14b) and (14~)) illustrates the smooth performance 

at transition, with path reconstruction when the complementary filter supplies 

the aircraft position and velocity to the guidance equations. Examination of 

Plot 3, Fig. (14~) shows that no roll is called for during transition indicating 

that both the cross track error and track angle errors are small at transition 

(33 seconds). Similarly, Plot 2 and 3, Fig. (14b), show very small activity 

in the vertical channel as compared with the same plots for Case 1. A vast 

improvement in aircraft performance with path reconstruction is plainly in- 

dicated. Furthermore, a comparison of Fig. (13a) and (14a) shows that the 

change in ground path is minimal. 

Case 4, Fig’s. (15a), (15b) and (15~)) illustrates similar acceptable tran- 

sition performance when the Kalman filter is used to supply the guidance 

equations in conjunction with path reconstruction. The major difference between 

the Kalman and complementary filter effect on transition performance is illus- 

trated in Plots 2, and 3 of Fig’s. (14~) and (15~). The Kalman filter causes a 

slight aircraft roll (Plot 2) transition due to a non zero track angle error (plot 3) 

caused by the error in the Kalman estimate of the lateral velocity. Examination 

of Plot 7, Fig.(l5c), indicates that the Kalman estimate of lateral velocity con- 

tinues to grow after 25 sets. The complementary filter, lateral velocity error, 

decreases from 3.5 m/set at 25 seconds to 2 m/see at transition (33 set), 

48 



while the Kalman estimate continues to grow to 4.5 m/set at transition. Fol- 

lowing transition, the Kalman estimates of velocity are much better than the 

complementary filter. Some additional study is recommended to remove this 

anomaly since it is expected that an optimal filter should be expected to out 

perform a fixed gain filter. In any case the performmce of both filters with 

path reconstruction does eliminate the objectional features of Case 1 with no 

path reconstruction. 

Case 5 illustrates the effect of winds on the transition performance 

with path reconstruction. A 10 knot wind at 165’ heading is simulated in this 

run. Comparing this case with Case 3, in which no winds were simulated, 

shows that the performance at transition, using the complementary filter is 

unaffected by winds. Even the error in the complementary filter estimate of 

the winds shown in Plots 4 and 5 of Fig. (16~) are similar to the error in the 

complementary filter estimate of the winds in Plots 4 and 5 of Fig. (14~) for 

no winds. 

Case 6 illustrates the effect of a 10 knot wind at -15’ heading on the 

transition performance when the Kalman filter information is used in the 

guidance equations. Case 6 is to be compared to Case 4 in which no winds were 

acting and the Kalman filter was used in the guidance equations. The performance 

at transition is seen to be unaffected by winds for both Kalman and complementary 

filter estimates and both filters produce smooth transition using the path recon- 

struction method. 

Case 7 illustrates the effect of changing the transition point from a 60’ to 

40° azimuth boundary for the MLS elevation signals. Case 7 is to 

be compared with Case 5. Both cases differ only in the time and location on the 

original trajectory that the transition is initiated due to the 40’ limit on the MLS 

elevation antenna. Comparing Fig. (18b) with Fig. (16b) and Fig. (18~) with 

Fig. (16~) it is apparent that except for the change in the time of transition, the 

performance is identical. 

Case 8 illustrates the effect of a 40’ azimuth boundary for the MLS elevation 

on the performance of Kalman filter. Once again the error in lateral velocity at the 
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instant of transition is seen to produce a slight track angle error following 

transition. Comparing Plot 3, Fig. (19c), with Plot 3, Fig. (17~) shows 

that the slight perturbation in track angle error following transition is moved 

in time and that smooth transition is possible for both filters and is unaffected 

by the sweep limits of the MLS elevation antenna. 

Case 9 illustrates what happens when the cross track error at transition 

is not large enough to trigger the path reconstruction. By changing the heading 

of the incoming leg it is possible to approach the transition point in a direction 

at right angles to the VORTAC range bias error. In this case the cross track 

error at the first valid MLS data point is too small to trigger the path recon- 

struction logic. The vertical error due to the baro bias and along-track error 

due to range bias now remains as a desired altitude error in the guidance 

equations and the “roller coaster” search for the proper altitude and altitude 

rate reoccurs. Plot 3 of Fig. (20b) illustrates the overshoot in altitude and 

rate of climb at transition. In order to avoid this effect it is deemed necessary 

to remove the CRTE limit at transition and cause the path redesign logic to 

occur at transition independent of the magnitude of the cross track error. 

Case 10 illustrates a 4 way point trajectory with two turns. Transition 

occurs after the first turn. The significant feature in this run is the persistence 

of the track angle error immediately following the transition point (125 sets. ). 

This is illustrated by the roll angle excursion from 125 seconds to 140 seconds 

in Plot 3, Fig. (21~). It appears that an alternate method in which both the 

cross track error and the track angle error at transition are nulled out should 

be investigated. 

Case 11 is an illustration of a 6 way point with 4 turns. The entire 

trajectory takes place within the MLS boundary so that no transition is en- 

countered. It is included here only for the purpose of illustrating the versatility 

of the way point path construction. 
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( c) Conclusions and Recommendations 

The main result of this study is that a smooth transition to MLS navaids 

in the terminal area is feasible and possible through the use of path reconstruction 

and filter reinitialization. The method, investigated in the study, of nulling the 

cross track error and altitude error with the first valid MIS aircraft position 

determination is simple and requires very little change in the existing way point 

trajectory construction software presently existent in the Langley Field TCV B-737 

aircraft navigation computer. 

The following recommendations are made: 

(1) Investigate alternate methods of path reconstruction to null out 

track angle error as well as cross track and altitude error at transition. 

(2) Study the behavior of the Kalman filter at transition to obtain 

better velocity behavior in the VORTAC navaid area. 

(3) Perform path reconstruction when either the cross-track or altitude 

error exceed specified limits or just always update to eliminate the code required 

for limit checking. 

(4) Investigate the changes that must be made in the existing aircraft 

software to accommodate the path reconstruction method outlined in this study and 

flight test the procedure for pilot comments and experience in transition in the 

terminal area. 

(5) Develop a method for path reconstruction for transition occurring 

during a turn. 
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TABLE I 

CONSTANTS USED IN WAYPOINT TRAJECTORY CONSTRUCTION 

wE (EARTH ROTATION RATE) 

G (GRAVITY CONSTANT) 

rE (RADIUS OF THE EARTH) 

1 knot = .5144434 m/set 

1 radian = 57.2957795O 

.7292131 10m4 rad/sec 

9.8066 m/set 
2 

6378.156 km 
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TABLE II 

INPUT DATA FOR WAYPOINT TRAJECTORY CONSTRUCTION 

CASES 1 THROUGH 8 

N=3 

x (1) 6 cr) h(I) 
DEG DEG m 

-77.1315516 40.2689558 1084.11 74.59 

-77.0847124 40.1709553 435.16 68.31 

-77.0232052 40.2523725 0 68.31 

VD (I) 
m/set 

RT = 2286 meters 

@ RUNWAY = 3o 
0 
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\ ‘\ ‘\ 
40.2615871O ‘\ ‘\ ‘\ 
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KALMAN FILTER ‘\ 
NO PATH RECONSTRUCTION ‘\ ‘\ ‘\ ‘\ ‘\ ‘\ ‘\ \ \ ‘\ ‘\ ‘, ‘\ ‘\ ‘\ ‘\ ‘\. 

Aircraft Ground Track 

Figure 12(a). -Case 1 MLS Transition Without Path Reconstruction 
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Figure 12@). - Case 1 Continued 
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Figure 12 (c). - Case 1 Concluded 
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Figure 13(a). - Case 2 MLS Transition With Path Reconstruction 
and Perfect Navigation Path 
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Figure 13(b). - Case 2 Continued 
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Figure 13 (c). - Case 2 Concluded 
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Aircraft Ground Track 

Figure 14 (a). - Case 3 MLS Transition With Path Reconstruction 
With Kalman Filter Navigation 
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Figure 14@). - Case 3 Continued 
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Figure 14(c). - Case 3 Concluded 
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Figure 15(a). - Case 4 MLS Transition With Path Reconstruction 
With Kahnan Filter Navigation 
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Figure 15(b). - Case 4 Continued 
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Figure 15 (0). - Case 4 Concluded 
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Figure 16 (a). - Case 5 MLS Transition With Path Reconstruction 
in Presence of Winds (10 Knots/165’ Heading) 
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Figure 1641). - Case 5 Continued 
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Figure 16 (c). - Case 5 .Concluded 
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Figure 17(a). - .Case 6 MLS Transition With Path Reconstruction 
in Presence of Winds (lo Knots/-15’ Heading) 
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Figure 17(b). - Case 6 Continued 
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Figure 1’7 (c). - Case 6 Concluded 
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Figure 18 (a). - Case 7 MLS Transition With Path Reconstruction 
at Some Distance From Turn 
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Figure 18(b). - Case 7 Continued 
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Figure 18 (c). - Case 7 Concluded 
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Figure 19(a). - Case 8 MLS Transition With Path Reconstruction 
Close to Turn 
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Figure 19(b). - Case 8 Continued 
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Figure 19(c). - Case 8 Concluded 
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TABLE III 

INPUT DATA FOR WAYPOINT TRAJECTORY CONSTRUCTION 

CASE 9 

N=3 

x (1) b (1) 

DEG DEG 

h (I) VD (I) 

m m/set 

-77.0742769 40.2101441 873.25 

-77.1152352 40.1298037 331.56 

-77.0232052 40.2523725 0 

&.p) = 2286 meters 

74.59 

64.31 

64.31 

@RUNWAY = 3o 
0 
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Figure 20 (a). - Case 9 MIS Transition When Cross Track Error 
Does Not Trigger Path Reconstruction 
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Figure 20 (b). - Case 9 Continued 
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TABLE IV 

INPUT DATA FOR WAYPOINT TRAJECTORY CONSTRUCTION 

CASE 10 

N=4 

A (I) 

DEG 

-77.1276539 

-77.1384963 

-77.0530063 

-77.02320524 

6 (1) h (1) VD (I) 
DEG m m/set 

40.1986043 643.30 74.59 

40.25056842 643.87 69.45 

40.21295326 241.46 64.31 

40.2523725 0 64.31 

RT (1) = 2286 meters 

RT (2) = 2286 meters 

4J RUNWAY = 3o 
0 
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Figure 21 (a). - Case 10 MLS Transition With Path R8construction 
and Multiple Turn Capability 
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Figure 21(b). - Case 10 Continued 
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Figure 21(c). - Case 10 Concluded 
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TABLE V 

INPUT DATA FOR WAYPOINT TRAJECTORY CONSTRUCTION 

CASE 11 

N=6 

x 0) 6 0) h t-0 
DEG DEG m 

1 -77.04768972 

2 -77.09841711 

3 -77.05699524 

4 -77.02892824 

5 -77.04632437 

6 -77.02320521 

40.2599459 1720.29 77.16 

40.192883238 989.38 77.16 

40.16107542 650.11 77.16 

40.19823274 

40.22179639 

40.25237254 

378.26 72.02 

202.60 64.31 

0 64.31 

F$ (1) = 1828.8 meters 

Kp = 2286 meters 

RT (3) = 1524 meters 

V,, (I) 
m/set 

# RUNWAY = 30 O 



X (to) = -r17.08175208’ 
tj (to) - 40.2149138O 
h (to) -, 1216.24 m 
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AZBOUND = 60’ 
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Figure 22 (a). - Case 11 MLS Transition With Path Reconstruction 
and Multiple Turn Capability 
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Figure 22(b). - Case 11 Continued 
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TABLE VI 

VORTAC AND BAR0 SIMTJLATION DATA 

VORTAC SIMULATION DATA 

x = -77.164894’ 
V 

6 = 40.403016’ 
V 

h = 45.72m 
V 

VORTAC BIAS 

Range bias = 365.76 m 

Bearing bias = .6’ 

VORTAC RANDOM NOISE 

=v = 48.77m 

Ub = .3O 

BAROMETER SIMULATION DATA 

BAR0 BIAS = 12.19 m 

‘bar0 = 1.524m 
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APPENDIX A 

Vectors and Matrices 

This appendix derives the equation for rotating a given vector 

about a fixed unit vector, through a given angle in Cartesian three space. 

The resulting transformation is used to describe the rotation of one Car- 

tesian coordinate system into another. Rules for vector addition, dot 

products, and cross products are reviewed. Finally, a vector matrix equa- 

tion is derived which describes the instantaneous rotation rate vector in 

the transformed coordinate system in terms of the rotation rates in the 

component systems comprising the transformation. 

A. Elementary Operations on a Vector 

A vector is an array of quantities. In this appendix we restrict our- 

selves to a Cartesian three space. Given a point in the coordinate system 

(x 1’ x2’ x3), the vector, R , is most easily visualized as the directed line 

segment from the origin (0.) O., 0. ) to the point. Thus the vector R , 

arranged as a column, is given by 

R = 

The sum of two vectors, A + B, is a vector C , whose components 

are given by the sum of the corresponding components of A and B. 

c = 

(Al) 

t-42) 

The dot product of two vectors, A . B , is a scalar functional whose 

value is given by the sum of the products of the corresponding elements. The 

operation is commutative 

A l B = B l A = al bl + a2 b2 + a3 b3 (A3) 
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Thus, A l A is the square of the Cartesian length of the vector; 

A l A = al2 + a22 + a32 = a2 

and we have for the magnitude of A , 

= (A . A)’ 

The unit vector , i , is given by 

(Aha) 

U-b) 

If we consider the dot product of the sum of two vectors into itself, 

we have 

(A5) 

(A+B)* (A+B) = a2+b2+2A- B 

From the cosine law in trigonometry, we have, if C = A + B 

2 
C = a2+b2+2abcos 0 

Thus, if 13 is the angle between 

A . B = ab cos 8 

(A6) 

(A7a) 

A and B, we have 

(An) 

The cross product of two vectors, A x B , is a vector , C , whose 

components are defined by , 
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It is plain that A x B = -B x A . 

The cross product of a vector into itself is the null vector 

The operation of cross product and dot product commute, that is, 

given three vectors A , B and C 

(AxB)*C = A. (BxC) = B. (CxA) (Al’3 

It follows from ( AlO) that if C = A , or C = B , we have 

(AxB).B = A*(BxB) = 0 

(All) 
(AxB)* A = B* (AxA) = 0 

It follows from (A 11) that the cross product vector, A x B , is a 

vector perpendicular to both A and B. Thus A x B is a vector normal 

to the plane defined by A and B . 

The triple cross product of three vectors, ( A x B ) x C is a vector 

which is contained in the plane defined by A and B and is orthogonal to C. 

Thus, we have 

(AxB)xC = B(A*C)-A(B*C) 6412) 

The square of the length of the cross product vector, A x B , is 

given by 

(AxB)* (AxB) = (A*A)(B.B)-(A*B)2 (AI3) 
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Thus, we have 

IA x B(= ab)sinBI 

where 8 is the angle between vectors A and B . 

(A13a) 

B. Rotation of a Vector About a Unit Vector Through an Angle -- -.*U--.-W.---w. 

The differential equation for the instantaneous rotation of vector , R , 
A 

about a fixed unit vector , A , is given by 

d 
-ii- R=w~xR 6414) 

where w is a scalar equal to the instantaneous rotation rate. 

To acquire the solution of Eq. (A 14) we may interpret the operation 

i x as a matrix. We have, from Eq. (A8), for any vector, B , 
.-b -. 

A Il. 
AxB = (A15) 

where a 1’ a2 ’ and a 
3 are the components of 1. 

Thus, the operation , i x , is a skew symmetric 3 x 3 matrix given by 

t 

‘\, 
0 -a 

ix = 
3 a2 \ 

a3 0 -al 

-a 2 al 
0 ! 

I / 

The matrix satisfies the characteristic equation 

(A15a) 

(ix)3 = -a2(Ix) 
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To prove this, we note that 

Since 

i* (;xB) = 0 

A 

and B is any vector, we have, for ( A x ) the identity 

(^AX)(iX)(iX) = - ;;* &ix) 

which proves Eq. (A16). 

Since i is of unit length, a2 = 1, the eigenvalues of ( i x ) are 

0 , i ,-i ; where i = m . 

The formal solution of Eq. (1.14) is 

R(t) = 
wt(ix) 

e R (toI 

(A17) 

(A17a) 

(Al%) 

W8) 

Since the roots of the characteristic equation of ( A x ) are x=0, 

i , and -i , we have, from the Lagrange interpolation formula, 

ed (Ax) = ; 
k=l 

where 

3 
II 
j = 1 I: (Ax) - XjI 1 
j#k 

exk 

wt 

3 
II 
j=l 
jfk 

(‘k - Xj’ 

0 0 

1 0 

0 1 1 

(Alga) 

(A19b) 
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Evaluating Eq. (A19) for X = 0 , i and -i , we have 

A 

e wt(A x, = (I + (1 - cos wt) (i x ) (1 x ) + sin wt i x ) 

The inverse (or reverse) transformation is e -4 xl since 

e-wt(A x) .wtcl; x) = eo = 1 

WO) 

(A=) 

FurthermorGthe inverse is the transpose since ( i x ) is skew symmetric. 

It follows that the transformation is orthogonal and represents a rigid rotation 

of every vector R (to) into a corresponding vector R (t) about the unit vector, 

i , through the angle, w t . 

If we choose the three unit vectors along the coordinate axes of the 

rotated system for R (to) , 

e wt(A x) 
the corresponding columns in the matrix, 

, given by Eq. ( A20) will be the images of the three axes in the fixed 

coordinate system. 

Since the transformation depends only on wt and 1 we define 

A 

T’cy i) = .cri(Ax) 6422) 

If we have a sequence of rotations of pi about Ai , o2 
A 

about A 
A2 

in the rotated system resulting from the first rotation, and 61 about A 

in the system rotated about i 
3 3 

2 , etc., we have 

G = T(cq ;ZI)T(% , i2)T(cv3 , A3’ (A23) 

a transformation from the rotated system into the fixed original system. 

As an illustration of the method we choose an inertial fixed reference 

frame, given by 

x1 
along the Earth North Pole; 

x2 
at the intersection of the Greenwich Meridian and the equator at 

the initial time, to ; 

x3 at the intersection of the -90’ meridian and the equator at to . 
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As the Earth rotates about its North Pole with constant rate, wE , 

we seek the transformation between the initial inertial reference frame and 

a rotating frame fixed in the rotating planet. We define the transformation 

to be GIE , from Earth fixed to inertial. Let At = t - to 

G IE = TWEAt, ;, 

Evaluating Eq. (A20) with 

we have 

G = IE 

! 

1 0 0 

0 cos wE At -sin w E At 

0 sin wE At cos wE At 

It is convenient to define a level earth coordinate system with its 

23 axis to the point on the Earth’s surface with right ascension, QI~ , 

and declination 6 . We obtain the transformation from levelEarth to 

inertial coordinates through 

G IL = T (a1 i1 ) ‘I’ (6, i2 ) 

(~24) 

(~25) 

(A26a) 

Q-6) 

In matrix form, Eq. (A26) is given by 

cos 6 0 Sin6 

G = IL 

[ 

sin 6 sin&i cos a -cos 6 sinq (A26a) 

-sin 6 cos 4y1 sin a cos 6 COSCQ 

In Earth level coordinates, the i3 axis is the radius vector from the 

Earth center in the inertial system; the G2 vector points due west and the 
A 
x1 vector is due north. 
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C. Rotation Bates 

Thematrix, T(o!, i ) , is an orthogonal transformation. Thus it 

leaves the length of every vector invariant. 

CR3 = T tRoj 0427) 

then 

R - R = [ ~~ ]T~-l~ { %] = ~~ l ~~ (A27a) 

Furthermore, given any two vectors A and B , the angle between them 

8, is invariant under the transformation of ( T ) . Let 

[Al] = T[A] 

and 

[B1} = T{B] 

then 
Al. B1 = 1 1 

a b coscy 

where QI is the angle between A1 and B’. 

From Eq. (A28 ) we have 

A1 l B1 = [AIT-‘T{B] = A-B = abcos0 

Since a1 = a and b1 = a we conclude that Q = 8 . 

Since the cross product of two vectors is a vector, we have that 

(T) tAxB3 = tT)fA}x(T)CB3 

6428) 

(A28a) 

(A28b) 

WW 
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Furthermore, we have 

(T)[AxB} = (T)(Ax)T-’ TCB]=(T){A?x(T)fBl (A29a) 

Since T [ B ] is an arbitrar.y vector, we conclude that for all 

(T) and CA] 
I 

( T ) ( A x ) T-l = ((T) [ A ] x ) t-430) 

The result enables us to relate the rotation rate in one coordinate 

system to the rotation rates in the transformed system. 

Let 

G = T(wIt, A1)T(w2t, i, ) T t w, t , i, ) 6431) 
L 3 3 

We have that 

dG= w(;x)G (~32) 

where B is the unit instantaneous 

and w is its scalar rotation rate. 

Differentiating Eq. (A31) we have 

0. * A A 
$ G = w1 (&) G + T (w,t, AI) w2 (A2x) T (w,t, A2) T (w3 t, A3) 

l-433) 

+ ‘I’ (yt, Al) ‘I’ (w2t, i3) w3 ti3N T tw,t, i3) 

rotation axis of the transformation, G 
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Equating Eq’s. (A32) and (A33) we have 

w (ix) q wl(ilx) + T (w,t, il) w,(iz”’ T-l(wlt. il’ 
(A33a) 

A A 
+ T(wlt,Al) T (w2t,A2) w3(i3x) T-‘(w2t,A2) T-‘(w&) 

Using the vector cross product identity of Eq. (A30) we have 

A h 

w (B x) = wi(Aix) + w2 (fT W,t,& A2 3 x> 

(A34) 

+ w3 ( { T (wit, ;r,) T (w2t,i2) i3 1 x > 

Since the identity is true for all vectors we may remove the cross 

product operator and obtain the desired instantaneous rotation rate vector 
A 

w B in terms of the components in the rotating systems. 

w ; = wlil + w2 T (wit, ;I’ i2 + w3 T (w&i) T (w2t, A2) A3 (A35) 

To obtain the inverse relationship we note that 

- w (ii x) G 
-1 

(A36) 

Following the same logic as in Eq’s. (A31) through (A35) we obtain 

w ii = w3i3 + w2 T (w,t, i3) i2 + w1 T (w,t, i,) T (w,t,A2) ;I (A37) 

Equation (1.37) may be used to obtain the body rotation rate in the 

local level coordinate system, %I/ from the knowledge of the measured 

body rotation rate with respect to the inertial system, !B I . We have 

m&T =- 
BI % I 

XT 
BI (A33) 
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where 
A A A A * A 

T BI = T(i, -p)TU, -8)T@, -d)T(i, r)T(j, -6)T(i, -a) WW 

It follows that 

+ TBG& 7) ((3, 6) + g ) 

Since 

and 

a = tan -1 -L\ 
( z / 

(A40) 

(A40a) 

We have 

;,= 

. . 
x R-R- r2x 

1 
r2 (y2+z2) ’ 

(A40b) 
. 

g = - y - tan a k 

(y2+z 1 2 8 

. . 
We may now solve for the Euler angle rates, 4 , 8 , and $, from the 

differential equation 
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APPENDIX B 

Waypoint Path Construction 

This appendix derives the equations for constructing a desired path 

consisting of straight lines (great circles on the surface of a spherical Earth) 

connected by arcs of circles, fixed on the surface of a rotating spherical 

Earth, and rotating with the Earth. 

The input data required for generating the path is minimal, con- 

sisting of the latitude and.longitude of a sequence of way points, the radius of 

the connecting circular arcs, and the desired altitude and airspeed at each 

way point. 

The path is constructed by sequentially connecting each pair of way 

points by a great circle arc on the surface of the Earth. At each interior 

way point, a circle is constructed by the intersection of a circular cone from 

the center of the Earth to the surface of the Earth. The radius of the circular 

conical base is taken to be the input turn radius at that interior way point. The 

center of the cone is chosen so that the circle is tangent to both the incoming 

great circle and the outgoing great circle. 

The coordinates of the unit vectors from theEarth center to the two 

tangent points on the surface of the spherical Earth are designated as additional 

way points, and the unit vector to the middle of each turn replaces each interior 

way point. The vertical construction of the path is now accomplished by 

generating a piecewise linear altitude variation from the middle of each turn 

to the middle of the next turn as a linear function of the ground track distance 

between the middle turn points. The initial and final segments are the two 

great circles connecting the initial way point to the first incoming tangent 

way point, and the great circle connecting the outgoing final tangent way point 

to the final way point. 

lo2 



A. Initial Data 

Let N be the number of way points (N must be at least three). 

At each way point we must supply the following: 

X (I) = longitude in degrees 

6 (I) = latitude in degrees 

h (I) = altitude in meters 

v d I) = airspeed in meters/set 

I = 1, N 

and at each interior way point we must supply the following: 

RT(I) = radius of the turn (meters) 

I = l,N-2 

W) 

032) 

B. Vector Representation of Each Way Point .-- 

The vector representation of each way point is in theEarth fixed 

frame. Converting the angle data to radians, the way point unit vectors 

are given by, 

.‘- sin 6 (I) 
WR(I) = 1 -cos 6 (I) sin A (I) 

i cos 6 (I) cos X (I) 

I=l,N 

(B3) 
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C. The Unit Normal Vectors -- ^--...cei ,.., _ ..* -.. 

Between each consecutive pair of way points we pass a plane which 

intersects the Earth surface in a great circle. The unit normal to that 

plane is given by 

;N (I) = 
ikt(I)~A(I+l) 

IWR (I) x WR (I + 1) 1 
034) 

I= l,N-1 

The vector magnitude of the cross product is required for the computation of 

the change in yaw heading angle at each interior corner way point. Let 

DN (I) = 1 WR (I) x WR (I + 1) 1 

I= 1, N-l 
(B4a) 

D. The Change in Yaw Heading 

The change in yaw heading at each interior way point is the angle through 
A 

which the unit normal vector WN (I) must be rotated about the unit way point, 

WR (I + 1) , in order to coincide with the outgoing unit normal vector, WN (I + 1). 

(See Fig. 23). Since the interior waypoint vector, WR (I + 1) is perpendicular 

to both the incoming and the outgoing normals, we have 

i7N (I+ 1) = Cos [ AlC, (I) ] WN(I) - sin [ Az.!J (I) ] WR(I+l) x WN(I) (B5) 

From Eq. ( B 5) we have 

&N (I) - &N (I + 1) = cos [ Ati (I) ] 

I = 1, N-2 

and 

i&t (I f 1) x kN (I) l WN (I + 1) = - sin [A@ (I) 1 

CsW 

(B6b) 
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/ 

Figure 23.- Turn Circle Geometry for Positive Heading Change 
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Since, from Eq. (B4), 

&N(I) = ;KR (I) x WR (I + 1) 

DN (I) 

we have 

(Bw 

&(1+1)x&(I) = 
WR (I) - WR (I + 1) WR (I) l WR (I + 1) 

CB6d) 
DN (I) 

and Eq. ( BGb) becomes 

WR (I) . WN (I + 1) ;= - sin [A0 (I) 1 
DN (T.1 

I=l, N-2 

It follows that the change in heading is given by 

Ati = tan 
-1 (I) l WN (I + 1) 

/A A 

CBW 

(B7) 
LDN (I)(WN (I) l WN (I + 1)),’ 

1=1, N-2 

The four quadrant definition of arc tangent should be used to evaluate Eq. (B 7). 

E. Center of the Circular Turn 

We note that for each interior way point WR (I + 1) , the unit radius 
n 

vector at the center of the turn CR (I) , the unit vector at the middle of the 

turn & (I), 
A 

and WR (I + 1) all lie in a plane. (See Fig. 24). Furthermore, A 
since WN (I) and LkN (I + 1) are perpendicular to WR (I + l), it follows that the 

sum iiN (I) + & (I + 1) is perpendicular to WR (I + 1) and also lies in the 

same plane. 
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;R (I+l) 

;NN (I) + ;N (I + 1) 

Note: For a negative ( A$ ) the vectors GN (I) and GN (I + 1) will be in the 
opposite direction. 

Figure 24. -Center of Turn and Middle of Turn Vectors 
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We have 

stlkl-v (I) = A 
WN (I) +WN (I+l) 

IWN (I) + WN (I + 1) 1 

I=l,N-2 

where 

[6N(I)+i’N(I+l)I= 2 lcos$I 

038) 

(BW 

It follows that WN (I + 1) and S&IV (I) form a perpendicular basis for all 

vectors in the common plane. Let fi be the angle bstween the center of the 

turn, ;R (I) and WR (I + 1) ; then the unit vector at the center of the circle 

is 

;R (I) = cos /3WR (I + 1) - sign ( AQ ) sin fi S&IV (I) W) 

I= l,N-2 

Let (y be the angle between ;R (I) and WC (I) on the circle with radius, 

l$ (I)* Then, we have 

RT (1) 
sinq = - 

‘E 

and the unit vector to the middle of the turn, WC (I) , is given by 

l&2 (I) = cos ( fi - cy ) WR (I + 1) : sign ( A@ ) sin ( 6 - 01) S&IV (I) 

0311) 
I 1, N-2 = 

To obtain an expression for the angle , B , we have from spherical triangles, 

using Fig. 23 , 

sinfl = sin Iy 

cos y- 
WW 
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cosp = Jz&i cBl2b) 

From Eq. ( B12a) we conclude that since the maximum value of sin fi = l., 

that the limiting value of is given by 

Ati -1 R 
- = cos 2 ( sin ( “1) 

e 
(B13) 

This value occurs when the two great circle paths are parallel meridians 

meeting at a point halfway around the Earth sphere from the circle center. 

For this limiting value of $9 the two radii from the center to the in- 

coming and outgoing tangent points lie a great circle, containing ;R (I) . 

The normal at the middle of the turn is required in the guidance 

parameter equations in order to compute the distance to go to complete the 

half turn. We have 

W;E (I) = ST-J&’ (I) (B13a) 

I = 1, N-2 

For the end of the turn we note that the normal at the outgoing tangent way point 

is WN (I + 1). 

F. The Incoming and Outgoing Tangent Unit Vectors 

To obtain the equation for the unit vector tangent way points, we note 

that the circle center 6R (I) and the normal to the great circle, WN (I) lie 

in a plane containing the incoming tangent waypoint ;I (I). (See Fig. 25). 

Since ^PI (I) is perpendicular to WN (I) , we have 

A 

PI (21 - 1) = ~~(CR(I)+sign(A~)sin0!WN(I)) 0314) 

I= l,N-2 
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Note: For negative ( A$ ) the directions of WN (I + 1) and WN (I) will be 
reverses in the figure. 

Figure 25.-Incoming and Outgoing Tangent Vectors 
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Similarly, for the outgoing unit tangent way point we have 

;I (21) = &Q ~~R(I)+sign(A@)sina\jN(I+l)) 0315) 

I = 1, N-2 

G. Altitude and Airspeed Gradients 

To compute the gradient in altitude and airspeed, we assign to the 

initial and final unit way points, as well as to each interior unit middle of 

the turn way points, &C (I) , a desired altitude and airspeed. By deter- 

mining the ground track distance between these successive way points, we 

may compute the gradient in altitude and airspeed over each element. (See 

Figs. (26a) , (26b) and (26~). 

The distance between the initial way point and the first middle way 

point is given by 

DST (1) = rEsin -’ ;IkR (1) x ;I (1) 1) + RT (1) I+(l) 1 fJ316) 

The distance between each of two successive middle of the turn unit way 

points is given by 

DST (I) = RT (I - 1) 1% (I - 1) I+ re sin-’ (1 ;I (21 - 2) x b (21 - 1) I) 

+ RT (1) 1% (1) I WW 

I = 2, N-2 

(N’3 1 

Finally,the distance between the last middle of the turn way point 

and the final touch down way point GR (N) , is given by 

DST (N - 1) = RT (N - 2) 1 (f&N - 2) I+ re sin-’ (1 ;I (2N-4) x &R (N) 1) 

(Bl7-b) 
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h (2) or VD t2) 

h (1) 

or vD (1) 
* a A 

WR (1) PI (1) WC (1) 

(a) Initial Gradients 

I 

h (1) h (I) or VD (1) 

or vD (I) 
A a * * w 

WC (1) PI (21) PI (21+1) WC (I+l) 

(b) Interior Gradients 

h V-1) 
or vD (N-l) 

- 
WC (N-2) WR (NJ 

(c) Final Gradients 

Figure 26. -Vertical Path Construction 
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The gradient in altitude for each element is given by 

GRAD (I) = h (I + 1) - h (I) 

DSJJ (1) 

I = 1, N-l 

The gradient in airspeed is given by 

DVG (I) = 
VD (I + ‘) - VD (I) 

DST (1) 

WfU 

(Bw 

H. Way Point Guidance Array 

If the initial input contains N way points, the final path contains 3N - 4 

way points. These way points subtend 3N - 5 segments; N - 1 of these are 

arcs of great circles and 2 (N - 2) comprise N - 2 pairs of half turns. Each 

segment is described by a vector array of 19 elements used in RNAV 

guidance on that particular segment. 

The guidance parameters, detailed in Section I (b) (page 12) of this report, 

require data which are constant over each of the 3N - 5 segments. These data 

are conveniently arranged in 3N - 5 guidance parameter vector arrays to be 

computed initially at the beginning of each flight and called by the guidance 

logic in sequence as required. The elements of each array are listed below 

for both great circles and half turn circles. 

Let11 gofromlto 3N-5 

J = Integer part ( I I/3) + 1 

K = 25-l 

If MODULO ( I I, 3) = 2, then L = J 

If MODULO (I 1~3) = 9, then L = J - 1 
cB20) 
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For Great Circles 

WP (1) = k-N (J, 1) 

WP (2) = &N (J, 2) 

WP (3) = i’N (J, 3) 

WI’ (4) = ;I (K, 1) 

WP (5) = PI (K, 2) 

WP (6) = ;I (K, 3) 

If I I = 3N - 5, 

f 
WP (4) = 

WP (7) = 

WP (8) = 

WP (9) = 

WP (10) = 

s,ign (Ati (3) ) 
CR (J, 1) * 
CR (J, 2) 

;R (J, 3) 

WP (11) = 0 

WP (12) = 5 (J) 

WP (13) = 0 

WP (14) = sin (tan -’ (GRAD(J) ) 

IfII >l,but < 3N-5 

HEND + GRAD(J) (rE sin-’ (1 +(2J-2) x ;I(~J-1) 1) ) 

VEND + DVD(J) (rE sin-’ (1 PI(2J-2) x &(2J-l)\)) 

CBW 
Cont’d. 

If11 = 3N-5 
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WP (15) = HEND 

WP (16) = GRAD(J) 

WP (17) = VEND 

WP (18) = DVD(J) 

WP (19) = J 

WP (20) = t A$ (J) /2 1 

For Half Turn Circles 

IfMODULO(II,3) = 2, thenL=J 

wp (1) = ;NE (L, 1) 

wp (2) = ‘I~NE (L, 2) 

wp (3) = ;NE (L, 3) 

If MODULO (I I,3 ) = 0, then L = J-l 

wp (1) = &N (5, 1) 

wp (2) = ikN (J, 2) 

wp (3) = ibN (J, 3) 

wp (4) 

wp (5) 

wp (6) 

wp (7) 

WP (8) 

wp (9) 

WP (10) 

WP (11) 

WP (12) 

WP (13) 

WP (14) 

HEND 

VEND 

0 

0 

0 

“_i@ (A$ W) 

CR (L, 1) 
A 
CR (L, 2) 
A 
CR (L 3) 

lAti(L)/d 

J+ (L) 
0 

= sin tan ( -’ (GRAD (J) )) 
= HEND + GRAD (J) @L) 1 A@ (L) / 2 I) 
= VEND + DVD (J) (F$(L)I A$ (L) / 2 i) 

@20) 
Cont’d. 

P321) 
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WP (15) = HEND 

WP (16) = GRAD (J) 

WP (17) = VEND 

WP (18) = DVD (J) 

WP (19) = J 

WP (20) = 0 

(B21) 
Cont’d. 
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APPENDIX C 

Discrete Formulation of a Third 

Order Complementary Filter 

This appendix derives a closed form solution of the third order comple- 

mentary filter for use in implementing a discrete formulation of the filter for 

flight computers. The solution permits the use of input gains to yield either 

3 real or 1 real and 2 complex conjugate roots. It provides for fixed coef- 

ficients to update the aircraft state position, velocity and acceleration directly 

from input noisy accelerometer data, and navigation aids such as MLS, VORTAC, 

and barometric data, etc., without requiring Runge Kutta integration. 

In what follows, the measurements are converted into a runway Car- 

tesian vector ( X, $, Z ). The details of the transformationare contained in 

Section II of this report and is not repeated here. Each component of the . 

coordinate system is estimated by means of three first order linear differen- 

tial equations driven by the converted measurement, say x , and the measure- 

ment of acceleration in that coordinate, l x’ . 

A. The, Third Order ComplementaT Filter 

The differential equations for the third order complementary filter for 

one of the three coordinates, (say x (t) ) may be written as 

. 
x1 = Kl ( x (t) - x1 ) + x2 &la) 

:2 
= K2(X(t)-x1)+x3+ji(t) Wb) 

. 
x3 = K3 ( x (t) - x1 ) (C w 

where 

K1 ’ K2 and K3 are the filter gains. 
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f (t) is the navigation aid pseudo measurement of the coordinate, in 

the x direction. 

‘z+! (t) is the measured noisy acceleration, assumed constant over the 

internal 0 g t 4 7 . 

From Eq. ( Clc) we may solve for x1 - 2 (t) 

1 
x1 

-f (t) = - - ir, 
K3 

Differentiating Eq. (C 2) we get 

. . x1 - x (t) = - & ‘x3 
3 

Substituting for ir, from Eq. ( C la) we obtain 

. 
K1 (i (t) - x1 ) + x2 - ii (t) = - $ y3 

3 

We may replace (i (t) - x1 ) in Eq. ( C2b) by its equivalent in Eq. 

( C 2) and obtain 

. 
x2 - f (t) = - +c; * 

3 
+ K1 x3 ) 

Differentiating Eq. (C 3) we obtain 

x2 -i(t) = - $ (‘2; +K1 Y3 ) 
3 

Replacing ic, by Eq. (c lb) , we obtain 

. . 
K2 ( ii (t) - xl) + X3 + g- (t) - i = - +- 

3 
(‘i; + K1 ii, ) 

Kw 

Pa) 

W’b) 

(C3) 

Wa) 

Wb) 

Again we replace x (t) - x1 in Eq. (C 3b) by its equivalent in Eq. (C 2) and 

obtain 

;;(q-&) = -1 (‘i;+K1 ;r3+K2X3+K3x3) 
K3 

tw 
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We now make the assumption that the navigation aid measurement 

x (t) is modeled as a quadratic polynomial of time. 

. t2 H (t) = x0 -I- x0 t + l ii0 2 63 

We determine the initial coefficient as follows: 

At t = 0 (the beginning of the discrete time interval). 

. . 
x (0) = x0 = x2 (0) 

. . . . 
x (0) = x0 = Y (7) +x,(O) 

At t = T we set the navigation aid measurement equal to x ( T ) . 

2 
x (T) = ii0 + x2 (0) 7 + ( Y (T)+ x3(O)) + 

We may now solve for the initial value of x (0) , namely x0 

X 
0 

= X(T) - x2 (0) 7 - @ (7 ) + x3 (0)) 4 

0% 

(C=)) 

(C5c) 

P-w 

Subtracting x1 (0) from both sides we have 

2 
X - x1 (0) = f ( T ) - ( x1 (0) + x2 (0) 7 + ( x3 (0) + *T-L- ) + ) ma) 

0 

Thus we have succeeded to model the observation H ( T ) in such a 

manner that if the difference between the observation 2 ( T ) and its pre- 

diction, as a quadratic function of x1 (0) , x2 (0) , x3 (0) and y ( T ) 

vanishes, then the initial value of G - x1 (0) also vanishes. 
0 
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Returning to Eq. (C4), we note that the right hand side is a constant 

and using Eq. (C 5b) , Eq. (C 4) becomes 

. . . . 
x3 

+ K1 ‘x3 + K2 x2 x3 + K3 x3 = K3 x3 (0) WW 

The solution of Eq. (C 4a) is either 

-x,(O) = ae’4 t 
x3 

+beBaZt cos Rt + c e -Q2t sinot 
B 

w 

(if the gains Kl , K2 , and K3 produce 1 real root and a pair of complex 

conjugate roots), or else 

x3 -x,(O) = ae 
-V+be-a2t 

+ce 
-Q3 t 

W3) 

if K 1’ K2 and K3 produce 3 real roots of the characteristic equation 

and 

z3 +Kl z 
2 

+K2z+K =0 3 

For the case of only one real root, Eq. ( C7), we have 

(z+a,) (z+(Y2)2+82 ( > = 0 

K1 = cY1 + 20 2 

K2 = 2 cy2a1 + a22 + B2 

K3 = sul(cu22 +P2) 

(W 

(C7a) 

(C%) 

(C7c) 

(C7d) 
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For the case of 3 real roots, Eq. (C 8) , we have 

(z+cq (z+012) (z+ a3’ = 0 Pa) 

a1 + a2 + a3 = K1 (C8b) 

Tdy2 + @la3 + Q2Q13 = K2 P33c) 

tYl cY2 a3 = K3 Pd) 

We now proceed to solve the discrete third order complementary filter 

for the two cases. 

Let the roots of the characteristic equation be ~1 , a2 + i fi , 

Q2 - i 0; then, the solution of Eq. (C 4a) is Eq. (C 7). We may now 

differentiate Eq. (C 7) to obtain a solution of Eq. (C 2). We have 

i 
-ait 

a a1 e 

I 
K3 ( x1 

- ; (q = y 3 = +b e 
-QP 

( a2 Cos fl t + 6 sin 6 t ) ww 

i 

+ce -%t(o: sin@t 
2 B 

- cos Bt. ) 
! 

Similarly, we may obtain an expression for j; 3 + Kl A 3 . I&calling that 

K1 = c$+2a2 we may solve Eq. (C 3) and obtain 

K3 (x2 - ; (t))= -y3-Klk3 Wl) 

I 
i+‘c e 

-CY2t 

( (c$2 +p2 
sin @t 
- 

i +V2) B -ollcospt) 
J 

121 

-..- _.- 



We may combine Eq’s. (C 10) , ( Cll) and (C 7) in matrix form to 

obtain 

r 
+ -q ’ 
a e 

be 
-a2t 

- a2 t 
ce 

c 

(CW 

where the elements of the 3 x 3 matrix (A) are given by 

all = 

a12 = 

a13 = 

a21 = 

a22 = 

a23 = 

a31 = 

a32 = 

a33 = 

dll 

a2 
sin Bt - - cos /? t 

B 

(c222 +f12 +a 1 &2) - cos fit + Q1 Bsin fit (C12a) 

(a!22+82+a1(Y2)~ -a1 cos p t 

1 

cos jg t 

sin/3 t 
B 
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Setting t = 0 , Eq. (C 12) becomes 

‘K3(xl(0) - a>‘+; 

0 i 
I 

0 i 
4 

The solution for a , b, and c is given by 

5 
a = 7 K3 ( x1 (0) - x0) 

b = -% 
7 K3 ( x1 (0) - x0’ 

YY”2 
2 - B2 

c = A K3 ( x1 (0) - x0) 

where A is the determinant of the matrix (A) 

A= a22 +fi2 +a12 -2a2(Y1 (C14a) 

a 

, b 

(C14) 

From Eq. (C 6a) we may substitute for xl(O) - x0 in Eq. ( C 14) and obtain 

% 
a = TK3(+I)- Z(T)) 

b = -5 
-773 (il (7) - z(T)) 

c = 441-“22-b2 
A K3(+)-+)) 

A 
2 

x1 = x1(0)+x2(0)7+(x3(0)+‘x’ (7)) + 

(C14b) 

(C14c) 
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After substituting the solution for a , b , and c into Eq. ( C12) we 

have 

I 

! G3t+)-h) 
.c 

r 

G1(X1t7)-~t7) 

( 

A 
+ G2(X1(T)-X(7) 

where 

I 
/ O12e 

-QIT 
+tp2+ @22-2 

%@2) e 
-2 T 

\ 

COS B 7 \ ., 

Gl = 
! 

1 
-IT 

- B2) - t a22 + p 2 e -‘2 ‘sinB7 j 

\ B,! 

/ : 2 
i2al %(e -(? 
! 

T - eDa TCOS 67 ) 

G2= / 
\ 
\,+ [Y12 ( a22 - B ) - (oL22 

2 2 \ ‘% ‘sinB7 
+B) p - 

6 
\ 

1 
-ii- 

i 
Q1 te 

-al 7 -a2 7 

-e cos /3 7 ) \ 

G3 = 
i 

-(/32+Iy22-ct1a2)e 

i 

A somewhat more convenient form for the solution is obtained by replacing 

G1 by Gl - 1 . Then Eq. ( C15) becomes 

i i 
X,(T) i--i, (7) 

I 

(C15a) 

:’ / (G, -1) ti, (7) - x (7)) 
f ’ 

(X2(7) = 

i 

(I 

t 

x.2 (0) + (x3(O) +-Y) 7 i + 
I 

l, G2(+7)-x(~)) K-33) 

/ i 1 I 
I * 

ix3wj ~ L. x3 (0) f 2 G3 - 1 (x1 (7) - x (7)) 
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In this form it is clear that if the residual x1 (T) - x (7) is zero, 

then the solution of x1 (7 ), x2 ( T ) and x3 (T ) is the so called “dead 

reckoning” solution obtained for a linear system under constant acceleration. 

Let the roots of the characteristic equation be a1 , a2 and a3 . 

III place of Eq. ( ClO) we now have 

K3(xl-X(~$= aale 
‘%T 

+bB2e 
- a2 7 -Q3 7 

+ca3e (C17) 

In place of Eq. ( Cll) we now have 

K3 (x2 - 

. 

x(T)) = a@1(a2+~3)5 
-a1 7 -CY2 7 

+ba2 (aI +Q3) e 

+ct23(cbf1+cf2P 
-CV3 7 

W3) 

For the equation for x3 - x3 (0) we have from Eq. ( C8) 

- a1 7 - CY2 T -9L3 7 

x3 - x3 (0) = a e +b e +ce 

The matrix equation replacing Eq. ( C12) is given by 

@2 

= {a1 (a2 +Q3) Q2 (Q$ +@3) 

I 

Setting t = 0 in Eq. ( C20) and solving for a , b and c we obtain 

Q1 
a 

= @,-a& tyq 
Kg (x1(0) - Go ) 

b = 
OLZ 

(cy2-arl) (%-cy3) 
K3 (x1(O) - x0 1 

tcw 

i 

-Q1 
ae 

‘b e 
-@2 

\ 

/ --a3 
;c e 
I. 

(-1) 

&3 
C 

= (ct3-cY1) (a3 -3) K3 txdo) 
- x0 ) 

125 



The final solution equivalent to Eq. (C 16) is given by the Gi 

coefficients 

G1-1 = 

G2 = 
~32(?L+%) 

ema ’ 

topg tcprJ 
1 

032) 

B. Determination of the Characteristic Boots From the Filter Gains 

It is sometimes more convenient to input the three gains, Ki , rather 

than the roots of the characteristic equation. In that case it is necessary to 

determine the values of the three roots and to find whether two are complex. 

Let the gains be Kl , K2 and K3 . The characteristic equation is 

z3+K1z2+K2z+K =6 
3 

with 

Ki 2 0 

First form the discriminant to test for reality of the roots. 

Let 

C = K12 

P = K2-C3 
/ 

Q = KS-F2 3-4- 
/ 

Cl K1 

(C23a) 

(C24). 
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The discriminant is given by 

D = 4P3+27Q2 

If D < 0 3 real negative roots 

If D 2 0 1 real negative and 2 complex conjugate 

For D < 0 

A = 2 (-P 3)8 
/ 

K1 
Q1= 3 - - A cos 8 

K 
%=$,$ (cos&yT sine 

For D 1 0 

1 
2 

I3 =( % 108 

E = -*Q+B 

F = -&Q-B 

I I 
1 

G = sgn (E) E 2 

H = sgn (F) (FI g 

(C25) 

(C26a) 

(C26b) 

(C28a) 

(C28b) 

(C28c) 

(C28d) 

(C28e) 
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K 
1 al = T- (G+H) 

K1 
&2=3+2 l(G+H) 

B = $ IG-HI 
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APPENDIX D 

Wind Estimator Models 

The physical model used to estimate the winds is based on the assump- 

tion that the aircraft attitude is maintained in a trimmed condition, aligned 

with the relative wind. In this equilibrium condition, we have for the horizontal 

components of the wind 

W 
X = 'G (l) - Vairspeed 'OS ~ W) 

(D2) 

If we retain the initial value of wx and w as the best estimate of the con- 
Y 

stant winds in a local level coordinate frame, we may model the deviation from 

this original estimate as an exponentially correlated random variable. 

Thus for the Kalman filter we have 

b”wx (t) = gwx ( 

Ewy (t) = lTwy ( 

where 

=W 
= 1. m/set 

The best estimate of 

-- 
t-At) e tit +o /F 

w 

At -- 
t-At) e tw I 

‘2 +cr - wt tw 

, t = 100. set , At = .05 set 
W 

the horizontal winds for the Kalman filter is 

-- 
wx (t) = wx (to> + bwx (t) 

iy (t) = WY (to) + “WY w 

(D3) 

(D4) 

(D5) 

W) 
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The observation of the winds are supplied by Eqls. ( Dl) and (D 2) and 

the residual for the Kalman filter equations are given by 

Awx = w* or) - ii (t) 
Eq. (4.1) x 

AwY = WY (t) - ;K (t) 
Eq. (4.2) Y 

(W 

08) 

The Kalman gains are computed in a manner already described in Ref. 1 (page 31) 

and are not repeated here. The updated value of the wind biases are given by 

bwx(t) = iiw,(t) + A bwx VW 

bwy(t) = I;w,(t) + Abw 
Y 

(DW 

For the case of the complementary filter we chose a first order expon- 

ential model without reference to any estimate of the variance. We have 

b wx (t) = bwx(t - At) + e 
- At& 

(w,(t,) + bwx(t - At) - wx 0) (Dll) 
Eq. (Dl) 

bwy (t) = bwy (t - At) + e -At/t, 
(w,(t,) + bwy (t - At) - wy (t) (D=) 

Eq- (D 2) 

where bwx (to) = bwy (to) = 0 , 

tw = 100 set, At = .05 sec. 
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